
www.manaraa.com

Dynamic Schemas in object database management
systems (ODBMS)

Lenny Hoffman, Todd Stavish, Dr Nic Caine, Brian Clark
Objectivity, Inc.

Abstract
Object oriented languages support the development of systems to solve many of today’s
computing problems where both the processing and data is complex. Data can be
complex both in type and relationships. Modeling the data as objects is a natural way to
represent this real world data. ODBMSs are an easy way to persist application objects,
avoiding the overhead of an object to relational mapping. ODBMSs persist objects of any
degree of complexity that the object language can define. However through the lifetime
of a system processing and data requirements change resulting in changes to the
underlying object model. Managing these changes without having to take the application
down is a key requirement in many of these systems. This paper discusses ways to
manage these changes.

1. Introduction
Most object oriented languages are static, i.e. the class definitions are compiled into the
application. If a class definition changes the application has to be taken down, rebuilt and
re-deployed. In this paper we look at 2 different ways to avoid this rebuilding of the
application.
Version 2.0 of the ODMG (Object Database Management Group) standard1 included a
meta-object interface for defining (create, read, update, delete classes) a schema in the
schema repository dynamically, and an interface to create, read, update and delete
instances of these classes without having the concrete class descriptions compiled in to
the application.
We will also describe a way to implement a meta-schema (schema of schema) using
standard schema and object modeling techniques.

2. Application Programmer Interfaces
Some object databases have implemented the ODMG V2.0 meta-object interface. This
provides APIs to dynamically create, read, update and delete class definitions in the
schema repository from within the applications, and then from within the same
application, or a different application, create, read, update and delete instances of those
classes. The advantage of this approach is that the application does not need to be taken
down to recompile the application to include the new or modified class definitions.
Object conversion can also be achieved dynamically from within the application.
Objectivity/DB provides functionality for the dynamic access of both schema and object
instances and separates the write and read functionality so that browsers can be written
without having access to the write functionality.

www.manaraa.com

3. Meta Schema
A great number of applications gain flexibility and power by working one level above
normal persistent classes. Normal persistent classes in this context are ones that are
defined through normal schema definition processes, and are statically tied to a
corresponding language class definition. By working with instances that describe the
"normal" persistent classes, applications are able to programmatically change schema,
and do so without requiring changes in static language class definitions.

This technique is often termed a "meta-schema" and usually takes the following form:

Class

Member

Object

Value

-class1

-members*

-class

1

-objects

*

-member

1 *

1

-values*

This is the schema as database sees it. Actual classes are described by creating instances
of Class with varying numbers and types of Members. An instance of programmatically
generated class is creating by creating an instance of Object and populating it with Value
instances that correspond to the class instances' members.

Along with the flexibility to generate classes and objects based on them at run time, the
approach allows you to define specialized member types, member types not found in
object-oriented programming languages such as C++ or Java. Take for example a range
limited integer member. In Java and in C++, there is no built in way to associate range
information with a primitive, but since we are defining our own member types, this is
something we can easily do.

www.manaraa.com

Member Value

+getMin() : int

+getMax() : int

-min : int

-max : int

IntMember

+getValue() : int

+setValue(in newValue : int)

-value : int

IntValue

-member

1 *

Our new range specifying member IntMember inherits from Member, and supports the
definition of a minimum and maximum value allowable for corresponding IntValues.
IntValue inherits from Value, provides storage of an Object instance specific integer
value, and in its setValue method checks newValue against the IntMember defined
range.

Along with adding new capabilities to member types found in Java and C++, it also
becomes a simple matter to add completely new member types. For example:

Member Value

DateMember -day : int

-month : int

-year : int

DateValue

-member

1 *

Here we have added a date as a first class member, not as a referenced or embedded
member like we would have to do in Java or C++.

The real thrust of all this modeling flexibility is that you can tailor your class model to
match your domain and its needed general capabilities.

In many cases, schema and data migration is a simple matter of propagating changes
from the class to all of its instances – notice the bi-directionality of the object-class
relationship specifically for this purpose. If such immediate propagation is not desired
then the Class instance can be versioned (simply a new copy made) before being
changed. Then Object instances can be selectively migrated by moving their class
reference from the old class to the new and updating values as needed.

www.manaraa.com

4. Summary
A number of Objectivity/DB users have implemented solutions using both API and meta-
schema approaches. The API gives the best performance without having to re-compile
the application. The schema and database is still dealing with concrete classes. The meta-
schema approach provides the most flexibility at a small cost in performance. The meta-
schema approach results in lots of small objects with lots of relationships, but that is what
object databases are good at anyway.

5. Acknowledgements
The Technical Services Engineers at Objectivity who have helped our users implement
these types of solutions.

6. References
1ODMG information in this document is based in whole or in part on material from The Object
Database Standard: ODMG 2.0, edited by R.G.G. Cattell, and is reprinted with permission of
Morgan Kaufmann Publishers. Copyright 1997 by Morgan Kaufmann Publishers.

